5-1/k-1/k^2=0

Simple and best practice solution for 5-1/k-1/k^2=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5-1/k-1/k^2=0 equation:


D( k )

k^2 = 0

k = 0

k^2 = 0

k^2 = 0

1*k^2 = 0 // : 1

k^2 = 0

k = 0

k = 0

k = 0

k in (-oo:0) U (0:+oo)

5-(1/k)-(1/(k^2)) = 0

5-k^-1-k^-2 = 0

t_1 = k^-1

5-1*t_1^2-1*t_1^1 = 0

5-t_1^2-t_1 = 0

DELTA = (-1)^2-(-1*4*5)

DELTA = 21

DELTA > 0

t_1 = (21^(1/2)+1)/(-1*2) or t_1 = (1-21^(1/2))/(-1*2)

t_1 = (21^(1/2)+1)/(-2) or t_1 = (1-21^(1/2))/(-2)

t_1 = (21^(1/2)+1)/(-2)

k^-1-((21^(1/2)+1)/(-2)) = 0

1*k^-1 = (21^(1/2)+1)/(-2) // : 1

k^-1 = (21^(1/2)+1)/(-2)

-1 < 0

1/(k^1) = (21^(1/2)+1)/(-2) // * k^1

1 = ((21^(1/2)+1)/(-2))*k^1 // : (21^(1/2)+1)/(-2)

-2*(21^(1/2)+1)^-1 = k^1

k = -2*(21^(1/2)+1)^-1

t_1 = (1-21^(1/2))/(-2)

k^-1-((1-21^(1/2))/(-2)) = 0

1*k^-1 = (1-21^(1/2))/(-2) // : 1

k^-1 = (1-21^(1/2))/(-2)

-1 < 0

1/(k^1) = (1-21^(1/2))/(-2) // * k^1

1 = ((1-21^(1/2))/(-2))*k^1 // : (1-21^(1/2))/(-2)

-2*(1-21^(1/2))^-1 = k^1

k = -2*(1-21^(1/2))^-1

k in { -2*(21^(1/2)+1)^-1, -2*(1-21^(1/2))^-1 }

See similar equations:

| 5(14+4k)=-5(-5k-10) | | 9x+4y=97 | | 8+3=11 | | 0.97+a=26 | | 20p=-8(-2p+3) | | -16+14x=82 | | 64=0.4x | | -2+6y=-2 | | -5(15r-15)=-6(5r+10) | | 5x+y=47 | | 16x+2-7=-95 | | h=at-0.25v+2 | | 55-x=-30 | | 2z-9= | | 1/x=3/4 | | 6cosx+5sinx=0 | | -95=-25x+30 | | 50+(10)= | | -11.9y-15.08+6.7y=-5.5y-18.26 | | 3[7-2(x+4)]= | | r/4=3.25/52 | | -40+25x=-215 | | 4.41-3.4d=-4.3d | | 4g+5=-1 | | 36/t=q/11 | | 85=5u+10 | | (-3X+6)=-13 | | -6.17+16b=-17.5b+10.58 | | 5/2x-y=3 | | -64=k/80 | | ac=5c+x | | 7(x+2)-4b=2(x+10) |

Equations solver categories